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Experiments were conducted recently (by Weiner and co-workers) on the optical shielding (suppression) of
atomic collisions in cold-atom beams, and its variation with the angle between the polarization direction of
the shielding light and the direction of approach of the beam. This case is shown here to be a typical example
of an optical collision in which quantum interference may persevere between two incident collision partial
waves leading to the same output state. This effect depends on the relative collisional phase shift of the two
interfering channels, as well as on the angle of approach, and will vanish when averaging over the latter (as
with collisions in the bulk). The extent of variation of this interference effect with the relative phase shift is
quite broad, and may lead, under favorable conditions, to almost complete shielding at a finite value of the
shielding-laser power. The latter observation leaves open the possibility of exerting coherent control over the
interference effect in order to optimize the shielding.

1. Introduction analysis shows, however, that in the case of Na, the incomplete
shielding effect can be attributed in part also to certain
“counterintuitive” transitions, which are not allowed in semi-
classical models of multiple curve crossing, as well as in the
linear potential model. These transitions correspond to the
schemey,J — ¢J—1—g,J—2 (see Figure 1). An extension of

prtoduge l:;it]ter hsulp()jpregsgn .Of ICOH'S'SHS byTrl?creasmtg tfthe the model of linear potentials to piecewise linear potentials can
Intensity of the shielding-inducing laser beam. This expectation 4, provide counterintuitive transitions comparable to those of
was based on the mechanism of a single LartZener (LZ) the QCC theoryt

transition. The laser radiation, tuned to the blue of the atomic
resonance transition, was supposed to couple the ground
electronic state of the collision pair to an excited (repulsive)
state. By the ensuing phenomenon of avoided crossing, the
probability of the atoms approaching each other (to within range
Qf Ioss-lnducmg processes) was supposed to decrease eXponerﬂ)’olarization direction (relative to the direction of approach of
tially as a function of the laser power. Experiments show that, the beam)

instead of decreasing exponentially, the penetration probability This bréaking of symmetry in the beam should have yet
rather tends to level off, producing incomplete shielding at the another consequence. Whereas, in the bulk, the total rate of a

I 7
higher power levefs”. collision process (such as the penetration probability) can be

h'A IZ',mpl(_a mo?c(jal, explalnflng the mSIm reasor:);nol; mccl;mplete written as a sum of independent contributions of incident partial
shielding in cold traps of metastable Xe atombas been .65 this is no more the case in the beam. Interference can

suggested recently by the authérghis model of multiple curve exist between two channels ending up in the same final state,
crossing gives a three-dimensional description of the shielding ¢ ., as the “direct” channel)(and the “diverted” oneX— 2)
process. The atoms, on approaching the shielding Condon pOIm1eading to the samel) state in the internal region (see Figure

at the grouqd elehctrpnlc state in a given D:rtla| wa\:je, :nay eqd 1). The resulting interference terms vanish on averaging over
up penetrating the inner zone again in the ground electronic ., iqropic distribution of collisions (as in the bulk case). The

state, but in a higher partial wave, even at high laser powers. .

- ) . present paper sets forth to analyze this interference effect and
The process is basically of the kigdJ—~ e (J+ 1)~ g, (J its consequences, using the approach of ref 1.
+ 2), whereg and e are respectively the ground and excited

electronic states, antiis the angular momentum (including the 5 The Model

relative motion of the atoms). The treatment of this model was

based on a theory of multiple curve crossing proce%ﬁwn The collision of two atoms interacting with an electromagnetic
from the similarity to a well-known exactly soluble problem of field mode can be described by the Hamiltonian

linear potentials.

The need to shield cold atoms (in the mK regime and below)
from loss-inducing collisions has drawn recently some attention
(see refs +7 and the reviews refs 8 and 9 with references
therein). Optical shieldiig” was originally supposed to

The experiments of Weiner and co-workers on cold atom
beam#? have diverted the attention to the question of optical
shielding in beams vs shielding in traps, with their isotropy of
atomic motion. The experiments show that the shielding, using
linearly polarized light, produces significant dependence on the

The effect discussed above is actually incorporated in more = _ 1 i(RZiR) + 1 T—TY+A+A..V
rigorous quantum close-coupling (QCC) calculations, as used 2,uR2 oR\ o ZMRZ( I € rad+ Trad
in the analysis of optical shielding in cold Na trép<Careful (1)

*To whom correspondence should be addressed. E-mail: abram@ USiNg units in whicth = 1. Here is the reduced mass of the
post.tau.ac.il. Fax+972-3-6409293. colliding atoms,R is the radius vector of the relative motion,
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o] in ref 13, combining the radiative, electronic, and rotational
S degrees of freedom

[IMZC= Yo(9,¢)I0NG - (Jeven) (6)

|IMITC= i ’237“]1/2 [Diu(@.9,0)|A = +10]+
(~1’Duy(e.2,0)A = ~1JIN — 103 (7)

HereD’am (¢,,0) are the Wigner functions (see ref 14), where
¥ and ¢ are the angular coordinates & in relation toE
(considered as a fixed quantization axis).

The close-coupling expansion of the system wave function
in terms of the basis functions, eqgs 6 and 7, has the form

00 J 1 [ J 1
P = JZ) NZ —0{(R)|IM O+ 21 MZ —M(R)|IMIID
& ves R 5 vl R @)

Figure 1. A schematic description of the potential curve arrangement. wherey' denotes a summation over only even values.of
The numbers denote correspondihgalues. The arrows describe the In order to consider the ionization processes in the internal

various penetration paths, discussed in the text (solid line for the direct, . )
dashed line for the diverted, and dotted line for the counterintuitive). region, we need as an asymptote the wave funcior Wi

The PAI box represents the region of photoassociative ionization, and including only incoming waves in its radial part. The plane-
the CC box that of the coherent control. wave asymptotic stationary collision state forms a superposition

Wi, + Wyt at R — oo, whereW,,; consists of outgoing radial
Jis the total angular momentum operator (including the angular waves, and can be written as
momentum of relative atomic motion and the resultant internal
angular momenturjy), Heis the electronic Hamiltonian at fixed W, + W, ~ [ul2py] L2 [exp (ipgR) + expip R)] x
nuclear positiongiaq is the Hamiltonian of the electromagnetic |OCJNL]+ scattered waves (9)
field with the eigenstatefNL]

N This state describes a unit incoming flux of particles with
HraglNE = Neo|NLJ (2) momentumpo, and has the proper symmetry with respect to
. . . . ion-core exchangeé. It then follows that the asymptotic condi-
andVragis the interaction of the electrons with the electromag- tions for the radial functiong)g\z") and®M); atR — oo should
netic field, defined here as be

(N[VigdN = 1] = —iE-d/2 B oW ~ APy [u/p " exp ipR), @~ 0 (10)

whereE is the (linearly-polarized) electric field strength ad where
is the total electronic dipole momentum operator.
The present work is concerned with t& and*I1, electronic i (-1 ., [Po
states as representing, respectively, the ground and excited states Anpo) = 2i Vor D Ym p_ 11)
of the diatom. In the adiabatic approximation, these states are 0 0
eigenstates ofl. obeying

Transitions between the states of eqs 6 and 7 are governed by
N the matrix elements of the radiative coupling,

HJAQ=V,(RIAL A=0,+1 (4)
DMV, JIMIC= g 6, +g™s,,,, +
where A is the projection of the electronic orbital angular MoV RI I Py LY

momentum of the diatom on the molecular axes. The potential 903 033)0mm, (12)
Vo of the 13 state is attractive and rather flat aNg of IT,
state is repulsive. For our purpose, it suffices to use/fahe where the three terms correspond to the three branéhds, (
van der Waals interaction, and foh the repulsive dipole and Q) of the optical rotational transition, and the coupling
dipole interaction, constantg are given in ref 1.
Substituting eq 8 into the stationary Sotlir@yer equation with
Vo(R) = —C6/R6, V,(R)=—-A+ C3/R3 (5) Hamiltonian eq 1 (see ref 13), we obtain coupled equations for

oY and ©).

HereA is the (blue-shifted) shielding-laser detuning, and (given ~ As a consequence of these equations, each ground-level state
d: is the radial atomic dipole elemernty = d,%/3. |JMY [ds coupled to the three excited stat@MI1L]|J + IMIIO

In the present paper, as in ref 1, we neglect the hyperfine (except for|JJy [that is coupled only t¢JJI10and|J + 1II1L0)
structure effects and consider spinless ion cores leaving alland|003 [that is coupled only t¢10I10). The potential curves
internal angular momentum contributions to the outer-shell (including the centrifugal energy) of the states coupled with
electrons. Thus, the full optical collision wave function must strengthg?, gby, andgl}) are crossing at the poin&;, Res,
be symmetrical under exchange of the ion cores. It may be and Ry, respectively (as in ref 1). Let us assume that the
expanded in terms of the following basis functions, introduced transition at each of the crossing points may be treated separately
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using the LZ theory (see ref 16). This assumption does not consisting of a sum of contributions of the crossing points
allow us to take into account the counterintuitive transitions.

The internal region can then be reached in the ground electronic x(A) = argl(id) = AIn A + 4 + 7/4 (20)

state, with a given angular momentuimalong two possible . . .
paths: the dirgct one, igrjwcluding avoided crosgsings gt the points 2nd the difference bet(\i/veen the Ehases produced by the adiabatic
Re3-1, Ry andRgy:1, and the diverted one, including crossings collls_lon poter]tlalsvj‘__z_ and V5% The_ latter _pot_entlals are

at the pointsRsy_1 andRey_1 (see Figure 1). An exception is optalngd by dlggonallzmg the potentlal matrix, .|nclud|ng the
theJ = 0 state, which can be approached only by a direct path. d|at_)a’F|c potentl_aIS/o andV;, the Cent_rlfugal potentials, and the
Thus, the expression for the radial wave functi@ﬁg)(R) in radiative couplingVia¢ The subscript) corresponds here to

the internal region consists of two terms, related to the th(?rr(]antr%nqe-chanfneltparltlarlllwlz\_/e.. best db .
corresponding penetration paths e efficiency of optical shielding is best measured by using

one of the the ionization processes (photoionization in the case
of alkali metal atoms, or Penning and associative ionization in
CIJS’\Q = (AJM\/ﬁ — Ay \/ﬂ exp XSM)))faz (13) the case of metastable rare-gas atoms), a§suming that they occur
at a closer range of the atomic separation. In order for the
ionization process to occur, this close range must be first
reached, by (a) crossing the shielding zone, and (b) passing over
the centrifugal potential barrier (at> O states). Let us assume
for simplicity’s sake that the three processes occur independently
T?M = exp(—ZJI/I(R“ﬁ)+1 - Znig"} — zml%’,g (14) and that the crossing of the barrier merely impkgs> Vj, (J),
whereV, (J) is the height of the centrifugal barrier. We shall
Tow=1[1- eXp(—Z”i(R'\QD] [1- eXp(—Zml(p'\ﬁ),l)] (15) alsq further assume that, once 'ghe atoms gntergd t.he ionjzation
region, past the centrifugal barrier, they will be ionized with a
fixed probability, notwithstanding the partial wavevith which
they have reached there. In this case, we can use the approach
of ref 1 (see eq 4.4 therein) to write down the differential
ionization cross section as

Here, the penetration probabilities along the direct and diverted
paths are respectivély

and&ss is a unit-flux normalized wave describing motion with
angular momentund in the field of the potentiaVy and the
associated centrifugal potential. According to ref 1, the LZ
exponents are given by

. . 7 (P) = Y 1P|, NS (po) I (21)
M, O+ @ -M)[ (- 1)J]12 m
A P N NI R 00 =MD
|. I where|a, pi[is a set of ion states. This set consists of outgoing
waves with a proper normalization. The expression of eq 21
o I3+ 17 — M7 |‘ @+ 1)@+ 2)] 2 differs from the total cross section (see eq 4.1 in ref 1) by the
Apy =4 NN Rl > X absence of integration over the directions of the initial relative
( X X )|. Iy momentumpg of the colliding atoms.
6+ 1-|MJ|) (16) Using egs 8, 11, and 13 for the wave functi¥f{po) one
gets, up to a constant factdirepresenting the fixed ionization
o M2 |'1 B JI+ 1)]-22 6+ 1— M) probability
Q033+ 1)[ 32

8.7772 Jmax J pO
g =" WY ||
o) p02 ; MZJ JM 'IM (po)

where,0(X) is the Heavyside step function. Given the dipele

dipole interaction of eq 5 Py s 2
TomYoaw | —| explxy )" (22)
172 o
7o~ 3.31x 10(d, (@)Y, aup “¥(MHz) [“@MU
EouK) whereJnax is the maximal even number such thé(Jma) <
I(W/cn?) (17) Eo. For the van der Waals potential of eq 5
o . - . : . _ o1 2~ \UB 12 _
HereEp = po?/(2u), andl is the shielding-laser intensity, while Jmax = 2 2 {1+ 12u (2E,°Cy) 3} 1
2_ 23 2 _
37 = UESCIA)* ~ 4.04 x 10" %u(amu) EuK) x %2[411({1+5.95x 10" (amu) x

C A(MH 2/3 18
(C5(au)A(MHz))"™ (18) (EOZ(/,K)CG(au))l/a}llz—l)] (23)

here k] denotes the integer part af
Whenever it is necessary to drop the assumption of a fixed
ionization probability, one can modify eq 22 by introducing
within the summation signs a factdﬁ"") representing a state-
. selective ionization probability starting from the partial wave
x (/I(R“’J'&l) —x (A(F,“ﬂ),l) + fR {[2u(Ey — of givenJ andM in the internal region.
g 2 ) d U In order to highlight explicitly the dependence on the angle
VISR — [2u(E, — V5(R)] 2} drR (19) 9 betweenpy and the electric field strength, let us express

As can be seen from eq 13, the amplitudes representing the
direct and diverted paths may have different phases. The phaséN
shift differenceng) between these amplitudes is expressed in
the semiclassical thedt§) in the following form:

M) _
A=
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the spherical harmonics in terms of the Legendre functions | g & T
PSM) (see ref 15) and write the penetration probability as

2

X
Umaxt Dmax 1 2)
Jmax J

ZO' Mz [T5w (P (cos))? + T4, (PN (cosv))’ +
=0 M=-J

2[T5u Tl VPS"(cosv) PM"(cosv) cosyS™] (24)

P =

where

“d (= [M])!

Taw= @3+ 1) (5o T
o _ @—2—|M))!
Tow=@ -3 55w @

The three terms within the square brackets in eq 24 correspond,
respectively, to the penetration along the direct path, the diverted
path (see Figure 1), and the interference of these paths. The
interference terms vanish on integration over directions of
approach ffo). They are, therefore, absent in the penetration
probability for an isotropic distribution of atomic velocities, as

in the case of atomic traps, considered in ref 1. However, the
interference must be taken into account in analyzing atomic-
beam experiments.

1 2 3 4
Intensity (W/cm?2)

At low shielding-laser intensity we ha\féjM > TY,, and the Figure 2. Penetration probability for Na as a function of the shielding-
interference term is negligible in comparison to the first term laser intensity at perpendicular (a) and parallel (b) polarization angles.

Lines denote calculations using the semiclassical phase shifts (solid
line), cosy!™ = 0 (long-dashed line) or-1 (dashed line) for all and
M. The experimental data of Weiner and co-workers are shown for

in the square brackets in eq 24 corresponding to the direct
penetration path. The interference vanishes in the limit of high

intensity, as well, i.e., whefig,, < T5. In this limit comparison, using the same laser detuning (250 MHz) and collision
energy (60 mK) for all plots.
P@)~P,=1—2 Pnas 1 (26)
~ o — — & 108 TR T LR 7
(Jmaxt DGmax T 2) QE ]
N\ |
does not depend ofi. The angle-averaged penetration prob- 08E ]

ability, considered in ref 1, has the same “hangup” vadhie
For the conditions prevailing in the Na beam experindédf;ax

= 4 andP., = 0.4. For the Xe bulk experimeAtonsidered in 0.6 ¢ NN E
ref 1, Jnax = 2 andP., = 1/6. g N 5
The interference terms substantially depend on the phaseshifts o4 f . 8 E
™. Unfortunately, their evaluation, in the adiabatic case, i I
involves an infinite number of interacting channels. Because : T
of this, and in order to show the full range of phaseshift 020123 ‘;}
variation, the penetration probabilities presented below include Intensity (W/cm2)
not only the phase shifts of eq 19, but also extremal values of
the phase shifts. Figure 3. Penetration probability for Na as a function of the shielding-

Figure 2 presents the penetration probability as a function of laser intensity is shown using a different set of phase shifts dependent

A : - ; onM [cosy” = 0 and cog,? = 1] but not onJ. Calculated values for
the shielding-laser intensity, for several choices of %%’ both polarizations [parallel (solid line) and perpendicular (dashed line)]

calculated By using parameters appropriate to the Na beamgre shown along with the experimental results. The results at these
experiment? The results are compared with the experimental ,,icylar polarization angles are insensitive A with odd M

data of ref 12. This figure shows a strong influence of the values. Detuning and energy as in Figure 2.

interference on the penetration probability. The interference 41,4 present model predicts non-monotonic dependence of
correction has the same sign as 8% if the atomic beam and  the penetration probability on the shielding-laser intensity (see
the electric field are parallel and the opposite sign if they are Figure 4), discernible on letting the laser intensity go beyond
perpendicular. This effect follows from properties of the the maximum value used in the experimeRitsThe extent of
Legendre functions (see ref 15). this nonmonotonic variation, showing an optimization dip at a

A better agreement with the experimental data may be finjte value of the laser intensity, is less pronounced in the bulk
obtained by choosing/-dependent phase shifts, such as cos propapilities, as calculated for Xe in ref 1.

%) = 0 and cosyP = —1 (see Figure 3). Phase shifts for ~ The angular dependence of the penetration probability at a
otherM values have no effect on these plots, siﬁ?ﬁ'@(O) = fixed laser intensity is plotted in Figure 5. Only the plot for
P (1) = 0 for oddM. cos ¥ = 0 (see Figure 5a) has a simple elliptical shape.
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Figure 4. Penetration probability for Na calculated as a function of
the shielding-laser intensity, at perpendicular (a) and parallel (b)
polarization angles, plotted over an extended intensity range, to show
the optimization dip at-6 W/cn?. The phase shifts are as in Figure 2
(solid and dotted lines) or Figure 3 (dash-dotted line).

Unlike the cases af = 0 andy = 7/2 mentioned above, phase
shifts ¥0 having oddM values do affect the penetration
probability at intermediaté values.

3. Discussion Figure 5. Penetration probability as a function of the polarization angle
o .1, for Na, calculated with a fixed laser intensity lof= 3 W/cn?. Part

The present paper demonstrates the possibility of a substantial shows the three choices of phase shifts as in Figure 2. Part b shows
effect of interference on the optical shielding of beam atom the choice of phase shifts as in Figure 3, including several choices of
collisions. This effect depends on the particular values of the 5 [1 (solid line), 0 (long-dashed line), or1 (dashed line)] for all
relative phase shifts of the interfering channels. The semiclas-oddM and allJ values.
sical estimates based on eq 19 usually produce phase shifioptimize the shielding by using a single control setup (at the
differences smaller than one radian, and therefore a significantcost of giving up almost complete shielding).
interference effect (corresponding to qdﬁ’ ~ 1). There is,

4 . .. 4. Conclusions
however, no reason to rely exclusively on internal phase shifts, .
determined by the collision Hamiltonian only. A fleeting look ~ We have demonstrated here how channel interference can

at Figure 4 shows that, given a certain combination of the affect the optical shielding in the case of beams interacting in
polarization angle and the phase shift, an almost completethe presence of polarized radiation. In particular, we have
shielding can be attained at a reasonably low laser intensly (  Pointed out the nonmonotonic dependence of the shielding
W/cr?), where the dip in the intensity-dependence curves may efficiency on the laser intensity, and especially the way it

approach complete shielding. It would be therefore desirable d€Pends on the polarization angle and on the phaseshift
to use the techniques a@bherent contro(refs 17 and 18) in difference between the two interfering channels. Finally, we

order to obtain control over the phase shift difference. Whereas Ninted at the possibility of coherently controlling this phase shift,
coherent control is usually applied to tpeoductsof certain exploiting the dip in the intensity dependence in order to
processes, it should be applied here to thactants in the optimize the shielding at a reasonably low value of the laser
process of approaching the transition range. A possible ap-Nensity. _ _ o o _
plication is a coherent stimulated-Raman device (with no  Further experimental investigations, reaching slightly higher
resonance delay) with frequencies adjusted to a single Condon/@Ser intensities than those used previously, will help clarify
point, displaced sufficiently further out from the shielding zone. @nd establish the points considered here.
Of course this would be optimally achieved if only one Acknowledgment. The authors are very grateful to John

internal J state would matter, as eadhstate might require a  Weiner for prepublication results, and to him as well as to Paul
different control scheme. It may nevertheless be possible to Julienne and Moshe Shapiro for helpful discussions.
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