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Experiments were conducted recently (by Weiner and co-workers) on the optical shielding (suppression) of
atomic collisions in cold-atom beams, and its variation with the angle between the polarization direction of
the shielding light and the direction of approach of the beam. This case is shown here to be a typical example
of an optical collision in which quantum interference may persevere between two incident collision partial
waves leading to the same output state. This effect depends on the relative collisional phase shift of the two
interfering channels, as well as on the angle of approach, and will vanish when averaging over the latter (as
with collisions in the bulk). The extent of variation of this interference effect with the relative phase shift is
quite broad, and may lead, under favorable conditions, to almost complete shielding at a finite value of the
shielding-laser power. The latter observation leaves open the possibility of exerting coherent control over the
interference effect in order to optimize the shielding.

1. Introduction

The need to shield cold atoms (in the mK regime and below)
from loss-inducing collisions has drawn recently some attention
(see refs 1-7 and the reviews refs 8 and 9 with references
therein). Optical shielding5-7 was originally supposed to
produce better suppression of collisions by increasing the
intensity of the shielding-inducing laser beam. This expectation
was based on the mechanism of a single Landau-Zener (LZ)
transition. The laser radiation, tuned to the blue of the atomic
resonance transition, was supposed to couple the ground
electronic state of the collision pair to an excited (repulsive)
state. By the ensuing phenomenon of avoided crossing, the
probability of the atoms approaching each other (to within range
of loss-inducing processes) was supposed to decrease exponen-
tially as a function of the laser power. Experiments show that,
instead of decreasing exponentially, the penetration probability
rather tends to level off, producing incomplete shielding at the
higher power levels5-7.

A simple model, explaining the main reason for incomplete
shielding in cold traps of metastable Xe atoms,3 has been
suggested recently by the authors.1 This model of multiple curve
crossing gives a three-dimensional description of the shielding
process. The atoms, on approaching the shielding Condon point
at the ground electronic state in a given partial wave, may end
up penetrating the inner zone again in the ground electronic
state, but in a higher partial wave, even at high laser powers.
The process is basically of the kindg, J f e, (J + 1) f g, (J
+ 2), whereg and e are respectively the ground and excited
electronic states, andJ is the angular momentum (including the
relative motion of the atoms). The treatment of this model was
based on a theory of multiple curve crossing processes,10 drawn
from the similarity to a well-known exactly soluble problem of
linear potentials.

The effect discussed above is actually incorporated in more
rigorous quantum close-coupling (QCC) calculations, as used
in the analysis of optical shielding in cold Na traps.2 Careful

analysis shows, however, that in the case of Na, the incomplete
shielding effect can be attributed in part also to certain
“counterintuitive” transitions, which are not allowed in semi-
classical models of multiple curve crossing, as well as in the
linear potential model. These transitions correspond to the
schemeg,J f e,J-1 f g,J-2 (see Figure 1). An extension of
the model of linear potentials to piecewise linear potentials can
also provide counterintuitive transitions comparable to those of
the QCC theory.11

The experiments of Weiner and co-workers on cold atom
beams12 have diverted the attention to the question of optical
shielding in beams vs shielding in traps, with their isotropy of
atomic motion. The experiments show that the shielding, using
linearly polarized light, produces significant dependence on the
polarization direction (relative to the direction of approach of
the beam).

This breaking of symmetry in the beam should have yet
another consequence. Whereas, in the bulk, the total rate of a
collision process (such as the penetration probability) can be
written as a sum of independent contributions of incident partial
waves, this is no more the case in the beam. Interference can
exist between two channels ending up in the same final state,
such as the “direct” channel (J) and the “diverted” one (J - 2)
leading to the same (J) state in the internal region (see Figure
1). The resulting interference terms vanish on averaging over
an isotropic distribution of collisions (as in the bulk case). The
present paper sets forth to analyze this interference effect and
its consequences, using the approach of ref 1.

2. The Model

The collision of two atoms interacting with an electromagnetic
field mode can be described by the Hamiltonian

using units in whichp ) 1. Here,µ is the reduced mass of the
colliding atoms,R is the radius vector of the relative motion,
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Ĵ is the total angular momentum operator (including the angular
momentum of relative atomic motion and the resultant internal
angular momentumĵe), Ĥe is the electronic Hamiltonian at fixed
nuclear positions,Ĥrad is the Hamiltonian of the electromagnetic
field with the eigenstates|N〉r

andV̂rad is the interaction of the electrons with the electromag-
netic field, defined here as

whereE is the (linearly-polarized) electric field strength andd̂
is the total electronic dipole momentum operator.

The present work is concerned with the1Σg and1Πu electronic
states as representing, respectively, the ground and excited states
of the diatom. In the adiabatic approximation, these states are
eigenstates ofĤe obeying

where Λ is the projection of the electronic orbital angular
momentum of the diatom on the molecular axes. The potential
V0 of the 1Σg state is attractive and rather flat andV1 of 1Πu

state is repulsive. For our purpose, it suffices to use forV0 the
van der Waals interaction, and forV1 the repulsive dipole-
dipole interaction,

Here∆ is the (blue-shifted) shielding-laser detuning, and (given
dr is the radial atomic dipole element)C3 ) dr

2/3.
In the present paper, as in ref 1, we neglect the hyperfine

structure effects and consider spinless ion cores leaving all
internal angular momentum contributions to the outer-shell
electrons. Thus, the full optical collision wave function must
be symmetrical under exchange of the ion cores. It may be
expanded in terms of the following basis functions, introduced

in ref 13, combining the radiative, electronic, and rotational
degrees of freedom

HereDJ
ΛM (æ,ϑ,0) are the Wigner functions (see ref 14), where

ϑ and æ are the angular coordinates ofR in relation to E
(considered as a fixed quantization axis).

The close-coupling expansion of the system wave function
in terms of the basis functions, eqs 6 and 7, has the form

where∑′ denotes a summation over only even values ofJ.
In order to consider the ionization processes in the internal

region, we need as an asymptote the wave functionΨ ) Ψin

including only incoming waves in its radial part. The plane-
wave asymptotic stationary collision state forms a superposition
Ψin + Ψout at R f ∞, whereΨout consists of outgoing radial
waves, and can be written as

This state describes a unit incoming flux of particles with
momentump0, and has the proper symmetry with respect to
ion-core exchange.1 It then follows that the asymptotic condi-
tions for the radial functionsΦJ∑

(M) andΦ(M)
JΠ at R f ∞ should

be

where

Transitions between the states of eqs 6 and 7 are governed by
the matrix elements of the radiative coupling,

where the three terms correspond to the three branches (R, P,
and Q) of the optical rotational transition, and the coupling
constantsg are given in ref 1.

Substituting eq 8 into the stationary Schro¨dinger equation with
Hamiltonian eq 1 (see ref 13), we obtain coupled equations for
ΦJ∑

(M) andΦJΠ
(M).

As a consequence of these equations, each ground-level state
|JM∑〉 is coupled to the three excited states|JMΠ〉, |J ( 1MΠ〉
(except for|JJ∑〉 that is coupled only to|JJΠ〉 and|J + 1JΠ〉,
and|00∑〉 that is coupled only to|10Π〉). The potential curves
(including the centrifugal energy) of the states coupled with
strengthsgRJ

(M), gPJ
(M), andgQJ

(M) are crossing at the pointsRRJ, RPJ,
and Rx, respectively (as in ref 1). Let us assume that the
transition at each of the crossing points may be treated separately

Figure 1. A schematic description of the potential curve arrangement.
The numbers denote correspondingJ values. The arrows describe the
various penetration paths, discussed in the text (solid line for the direct,
dashed line for the diverted, and dotted line for the counterintuitive).
The PAI box represents the region of photoassociative ionization, and
the CC box that of the coherent control.
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using the LZ theory (see ref 16). This assumption does not
allow us to take into account the counterintuitive transitions.
The internal region can then be reached in the ground electronic
state, with a given angular momentumJ, along two possible
paths: the direct one, including avoided crossings at the points
RPJ-1, Rx, andRRJ+1, and the diverted one, including crossings
at the pointsRRJ-1 andRPJ-1 (see Figure 1). An exception is
theJ ) 0 state, which can be approached only by a direct path.
Thus, the expression for the radial wave functionΦJ∑

(M)(R) in
the internal region consists of two terms, related to the
corresponding penetration paths

Here, the penetration probabilities along the direct and diverted
paths are respectively1

andêJΣ is a unit-flux normalized wave describing motion with
angular momentumJ in the field of the potentialV0 and the
associated centrifugal potential. According to ref 1, the LZ
exponents are given by

where,θ(x) is the Heavyside step function. Given the dipole-
dipole interaction of eq 5

HereE0 ) p0
2/(2µ), andI is the shielding-laser intensity, while

As can be seen from eq 13, the amplitudes representing the
direct and diverted paths may have different phases. The phase
shift differenceøJ

(M) between these amplitudes is expressed in
the semiclassical theory16) in the following form:

consisting of a sum of contributions of the crossing points

and the difference between the phases produced by the adiabatic
collision potentialsVJ-2

ad and VJ
ad. The latter potentials are

obtained by diagonalizing the potential matrix, including the
diabatic potentialsV0 andV1, the centrifugal potentials, and the
radiative couplingVrad. The subscriptJ corresponds here to
the entrance-channel partial wave.

The efficiency of optical shielding is best measured by using
one of the the ionization processes (photoionization in the case
of alkali metal atoms, or Penning and associative ionization in
the case of metastable rare-gas atoms), assuming that they occur
at a closer range of the atomic separation. In order for the
ionization process to occur, this close range must be first
reached, by (a) crossing the shielding zone, and (b) passing over
the centrifugal potential barrier (atJ > 0 states). Let us assume
for simplicity’s sake that the three processes occur independently
and that the crossing of the barrier merely impliesE0 g Vb (J),
whereVb (J) is the height of the centrifugal barrier. We shall
also further assume that, once the atoms entered the ionization
region, past the centrifugal barrier, they will be ionized with a
fixed probability, notwithstanding the partial waveJ with which
they have reached there. In this case, we can use the approach
of ref 1 (see eq 4.4 therein) to write down the differential
ionization cross section as

where|a, pf〉 is a set of ion states. This set consists of outgoing
waves with a proper normalization. The expression of eq 21
differs from the total cross section (see eq 4.1 in ref 1) by the
absence of integration over the directions of the initial relative
momentump0 of the colliding atoms.

Using eqs 8, 11, and 13 for the wave functionΨ(p0) one
gets, up to a constant factorZ representing the fixed ionization
probability

whereJmax is the maximal even number such thatVb(Jmax) e
E0. For the van der Waals potential of eq 5

where [x] denotes the integer part ofx.
Whenever it is necessary to drop the assumption of a fixed

ionization probability, one can modify eq 22 by introducing
within the summation signs a factorZJ

(M) representing a state-
selective ionization probability starting from the partial wave
of given J andM in the internal region.

In order to highlight explicitly the dependence on the angle
ϑ betweenp0 and the electric field strengthE, let us express
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≈ 2[14({1 + 5.95× 10-4µ (amu)×

(E0
2(µK)C6(au))1/3}1/2 - 1)] (23)
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the spherical harmonics in terms of the Legendre functions
PJ

(M) (see ref 15) and write the penetration probability as

where

The three terms within the square brackets in eq 24 correspond,
respectively, to the penetration along the direct path, the diverted
path (see Figure 1), and the interference of these paths. The
interference terms vanish on integration over directions of
approach (p0). They are, therefore, absent in the penetration
probability for an isotropic distribution of atomic velocities, as
in the case of atomic traps, considered in ref 1. However, the
interference must be taken into account in analyzing atomic-
beam experiments.12

At low shielding-laser intensity we haveT̃JM
d . T̃JM

u and the
interference term is negligible in comparison to the first term
in the square brackets in eq 24 corresponding to the direct
penetration path. The interference vanishes in the limit of high
intensity, as well, i.e., whenT̃JM

d , T̃JM
U . In this limit

does not depend onϑ. The angle-averaged penetration prob-
ability, considered in ref 1, has the same “hangup” valueP∞.
For the conditions prevailing in the Na beam experiment,12 Jmax

) 4 andP∞ ) 0.4. For the Xe bulk experiment,3 considered in
ref 1, Jmax ) 2 andP∞ ) 1/6.

The interference terms substantially depend on the phaseshifts
øJ

(M). Unfortunately, their evaluation, in the adiabatic case,
involves an infinite number of interacting channels. Because
of this, and in order to show the full range of phaseshift
variation, the penetration probabilities presented below include
not only the phase shifts of eq 19, but also extremal values of
the phase shifts.

Figure 2 presents the penetration probability as a function of
the shielding-laser intensity, for several choices of cosøJ

(M),
calculated by using parameters appropriate to the Na beam
experiment.12 The results are compared with the experimental
data of ref 12. This figure shows a strong influence of the
interference on the penetration probability. The interference
correction has the same sign as cosøJ

(M) if the atomic beam and
the electric field are parallel and the opposite sign if they are
perpendicular. This effect follows from properties of the
Legendre functions (see ref 15).

A better agreement with the experimental data may be
obtained by choosingM-dependent phase shifts, such as cos
øJ

(0) ) 0 and cosøJ
(2) ) -1 (see Figure 3). Phase shifts for

otherM values have no effect on these plots, sincePJ
(M)(0) )

PJ
(M)(1) ) 0 for oddM.

The present model predicts non-monotonic dependence of
the penetration probability on the shielding-laser intensity (see
Figure 4), discernible on letting the laser intensity go beyond
the maximum value used in the experiments.12 The extent of
this nonmonotonic variation, showing an optimization dip at a
finite value of the laser intensity, is less pronounced in the bulk
probabilities, as calculated for Xe in ref 1.

The angular dependence of the penetration probability at a
fixed laser intensity is plotted in Figure 5. Only the plot for
cos øJ

(M) ) 0 (see Figure 5a) has a simple elliptical shape.

P (ϑ) )
2
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′ ∑
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[T̃JM
d (PJ
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(M) (cosϑ))

2 +

2[T̃JM
d T̃JM

u ]1/2PJ
(M)(cosϑ) PJ-2

(M) (cosϑ) cosøJ
(M)] (24)

T̃JM
d ) (2J + 1)

(J - |M|)!
(J + |M|)!TJM

d

T̃JM
u ) (2J - 3)

(J - 2 - |M|)!
(J - 2 + |M|)!TJM

u (25)

P(ϑ) ≈ P∞ ) 1 - 2
2Jmax + 1

(Jmax + 1)(Jmax + 2)
(26)

Figure 2. Penetration probability for Na as a function of the shielding-
laser intensity at perpendicular (a) and parallel (b) polarization angles.
Lines denote calculations using the semiclassical phase shifts (solid
line), cosøJ

(M) ) 0 (long-dashed line) or-1 (dashed line) for allJ and
M. The experimental data of Weiner and co-workers are shown for
comparison, using the same laser detuning (250 MHz) and collision
energy (60 mK) for all plots.

Figure 3. Penetration probability for Na as a function of the shielding-
laser intensity is shown using a different set of phase shifts dependent
onM [cosøJ

(0) ) 0 and cosøJ
(2) ) 1] but not onJ. Calculated values for

both polarizations [parallel (solid line) and perpendicular (dashed line)]
are shown along with the experimental results. The results at these
particular polarization angles are insensitive toøJ

(M) with odd M
values. Detuning and energy as in Figure 2.
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Unlike the cases ofϑ ) 0 andϑ ) π/2 mentioned above, phase
shifts øJ

(M) having odd M values do affect the penetration
probability at intermediateϑ values.

3. Discussion

The present paper demonstrates the possibility of a substantial
effect of interference on the optical shielding of beam atom
collisions. This effect depends on the particular values of the
relative phase shifts of the interfering channels. The semiclas-
sical estimates based on eq 19 usually produce phase shift
differences smaller than one radian, and therefore a significant
interference effect (corresponding to cosøJ

(M) ≈ 1). There is,
however, no reason to rely exclusively on internal phase shifts,
determined by the collision Hamiltonian only. A fleeting look
at Figure 4 shows that, given a certain combination of the
polarization angle and the phase shift, an almost complete
shielding can be attained at a reasonably low laser intensity (∼6
W/cm2), where the dip in the intensity-dependence curves may
approach complete shielding. It would be therefore desirable
to use the techniques ofcoherent control(refs 17 and 18) in
order to obtain control over the phase shift difference. Whereas
coherent control is usually applied to theproductsof certain
processes, it should be applied here to thereactants, in the
process of approaching the transition range. A possible ap-
plication is a coherent stimulated-Raman device (with no
resonance delay) with frequencies adjusted to a single Condon
point, displaced sufficiently further out from the shielding zone.

Of course this would be optimally achieved if only one
internal J state would matter, as eachJ state might require a
different control scheme. It may nevertheless be possible to

optimize the shielding by using a single control setup (at the
cost of giving up almost complete shielding).

4. Conclusions

We have demonstrated here how channel interference can
affect the optical shielding in the case of beams interacting in
the presence of polarized radiation. In particular, we have
pointed out the nonmonotonic dependence of the shielding
efficiency on the laser intensity, and especially the way it
depends on the polarization angle and on the phaseshift
difference between the two interfering channels. Finally, we
hinted at the possibility of coherently controlling this phase shift,
exploiting the dip in the intensity dependence in order to
optimize the shielding at a reasonably low value of the laser
intensity.

Further experimental investigations, reaching slightly higher
laser intensities than those used previously, will help clarify
and establish the points considered here.

Acknowledgment. The authors are very grateful to John
Weiner for prepublication results, and to him as well as to Paul
Julienne and Moshe Shapiro for helpful discussions.

Figure 4. Penetration probability for Na calculated as a function of
the shielding-laser intensity, at perpendicular (a) and parallel (b)
polarization angles, plotted over an extended intensity range, to show
the optimization dip at≈6 W/cm2. The phase shifts are as in Figure 2
(solid and dotted lines) or Figure 3 (dash-dotted line).

Figure 5. Penetration probability as a function of the polarization angle
ϑ, for Na, calculated with a fixed laser intensity ofI ) 3 W/cm2. Part
a shows the three choices of phase shifts as in Figure 2. Part b shows
the choice of phase shifts as in Figure 3, including several choices of
øJ

(M) [1 (solid line), 0 (long-dashed line), or-1 (dashed line)] for all
odd M and allJ values.
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